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Abstract

Some classical results due to Marcinkiewicz, Littlewood and Paley are proved for the Ciesielski–
Fourier series. TheMarcinkiewiczmultiplier theorem is obtained forLp spaces andextended toHardy
spaces. The boundedness of the Sunouchi operator onLp and Hardy spaces is also investigated.
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1. Introduction

For trigonometric and Walsh–Fourier series the partial sum operators are bounded on
Lp (1<p<∞) spaces. A vector-valued version of this theorem is due to Marcinkiewicz
and Zygmund for trigonometric Fourier series (see e.g.[40, II. p. 225]), to Sunouchi[33]
forWalsh–Fourier series and toYoung[39] for Vilenkin–Fourier series. By the Littlewood–
Paley theory theLp norm(1<p<∞) of the square function off is equivalent to theLp
norm of f (for the Walsh system see e.g.[21], for the trigonometric series, see
[40, II. p. 224]or [11]).
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Marcinkiewicz (see e.g.[40, II. p. 232]) gave a sufficient condition for a multiplier op-
erator of the trigonometric Fourier series to be bounded onLp (1<p<∞) spaces. The
same theorem is proved by Young[39] for Vilenkin–Fourier series. Hörmander[16] gen-
eralized the Marcinkiewicz condition and theorem. Under some Hörmander-type condi-
tions the boundedness of the multiplier operator was proved also on the Hardy spacesHp
(for trigonometric Fourier series see[1,8,20], for Walsh- and Vilenkin–Fourier series see
[7,17–19]).
In this paper we extend these results to Ciesielski–Fourier series, which are generaliza-

tions of the Walsh–Fourier series. The Ciesielski systems can be obtained from the spline
systems of order(m, k) in the same way as the Walsh system arises from the Haar system
(see[4–6]). The Marcinkiewicz multiplier theorem is extended in another way to Hardy
spaces, which is even new for theWalsh system.A sufficient condition is given for the mul-
tiplier operator to be bounded from theHp Hardy space toLp, wherep0 < p�1 andp0 is
depending on themultiplier and onmandk. It is also proved that the Littlewood–Paley-type
square function is bounded fromHp toLp (p0 < p�1).
For Walsh–Fourier series Sunouchi[32,33] introduced an operator and verified that it

is bounded onLp (1 < p < ∞) spaces. This operator was used to prove some strong
summability results of Fourier series. The analogous statement fails to hold forp = 1 (see
[34]). The corresponding theorem for trigonometric Fourier series can be found in[40, II. p.
224].Manyauthorshave investigated theSunouchi operatorU (e.g.[10,14,15,24,25,27–29])
for Walsh-, Walsh–Kaczmarz and Vilenkin systems. Simon[24] verified thatU is bounded
from Hp to Lp for p = 1. This result was extended recently to all 0< p�1 by Weisz
[37] and Simon[25]. By using our multiplier theorems mentioned above, in the last section
these results will be generalized for Ciesielski–Fourier series.

2. Ciesielski systems

We consider the unit interval[0, 1) and the Lebesgue measure� on it. We also use the
notation|I | for the Lebesgue measure of the setI. For brevity we writeLp instead of the
realLp([0, 1),�) space while the norm (or quasi-norm) of this space is defined by‖f ‖p :=
(
∫
[0,1) |f |p d�)1/p (0< p�∞). The spacelp consists of those sequencesb = (bn, n ∈ N)

of real numbers for which

‖b‖lp :=
(∑
n∈N

|bn|p
)1/p

< ∞

while Lp(lr ) (1�p, r < ∞) consists of all sequencesf := (fn, n ∈ N) of functions for
which

‖f ‖Lp(lr ) :=
∥∥∥∥∥∥
(∑
n∈N

|fn|r
)1/r

∥∥∥∥∥∥
p

< ∞.
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First we define the Walsh system. Let

r(x) :=
{
1 if x ∈ [0, 12),
−1 if x ∈ [12, 1)

extended toR by periodicity of period 1. TheRademacher system(rn, n ∈ N) is defined by

rn(x) := r(2nx) (x ∈ [0, 1), n ∈ N).

TheWalsh functionsare given by

wn(x) :=
∞∏
k=0

rk(x)
nk (x ∈ [0, 1), n ∈ N)

wheren = ∑∞
k=0 nk2

k, (nk = 0 or nk = 1). It is known thatwn(t)wn(x) = wn(x+̇t)
(n ∈ N, t, x ∈ [0, 1)), where the dyadic additioṅ+ is defined e.g. in[23].
Next we introduce the spline systems as in Ciesielski[5]. Let us denote byD the differ-

entiation operator and define the integration operators

Gf (t) :=
∫ t

0
f d�, Hf (t) :=

∫ 1

t

f d�.

Define the�n, n = 1,2, . . ., Haar systemby �1 := 1 and

�2n+k(x) :=
{
2n/2 if x ∈ ((2k − 2)2−n−1, (2k − 1)2−n−1),

−2n/2 if x ∈ ((2k − 1)2−n−1, (2k)2−n−1),

0 otherwise

for n, k ∈ N, 0< k�2n, x ∈ [0, 1).
Letm� − 1 be a fixed integer. Applying the Schmidt orthonormalization to the linearly

independent functions

1, t, . . . , tm+1,Gm+1�n(t), n�2,

we get thespline system(f (m)n , n� −m) of orderm. For 0�k�m+1 andn�k−m define
the splines

f (m,k)n := Dkf (m)n , g(m,k)n := Hkf (m)n

of order(m, k). Let us normalize these functions and introduce a more unified notation,

h(m,k)n :=
{
f
(m,k)
n ‖f (m,k)n ‖−1

2 for 0�k�m+ 1,

g
(m,−k)
n ‖f (m,−k)n ‖2 for 0� − k�m+ 1.

We get the Haar system ifm = −1, k = 0 and theFranklin systemif m = 0, k = 0. The
systems(h(m,k)i , i� |k| −m) and(h(m,−k)j , j� |k| −m) are biorthogonal, i.e.

(h
(m,k)
i , h

(m,−k)
j ) =

{
1 if i = j,

0 if i �= j ,

where(f, g) denotes the usual scalar product
∫
[0,1) fg d�.
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It is proved in Ciesielski[4,5] that

|DNh(m,k)2�+� (t)|�C2(N+1/2)�q2
�|t−�/2�|, (1)

wherem� − 1, |k|�m+ 1, k +N�m+ 1,� ∈ N and� = 1, . . . ,2�.
In this paper, the constantsC andq are depending only onm and the constantsCp are

depending only onp andm. The constantsC, q andCp may denote different constants in
different contexts, however,q denote constants for which 0< q < 1.
Starting with the spline system(h(m,k)n , n� |k| − m) we define theCiesielski system

(c
(m,k)
n , n� |k| − m) in the same way as the Walsh system arises from the Haar system,

namely,

c(m,k)n := h(m,k)n (n = |k| −m, . . . ,1)

and

c
(m,k)
2�+i :=

2�∑
j=1

A
(�)
i,j h

(m,k)
2�+j (1� i�2�).

We get immediately that

h
(m,k)
2�+j :=

2�∑
i=1

A
(�)
i,j c

(m,k)
2�+i (1�j�2�).

As mentioned before,

c(−1,0)
n = wn−1 (n�1)

is the usual Walsh system. One can show (see[23] or [6]) that

A
(�)
i,j = A

(�)
j,i = 2−�/2wi−1

(
2j − 1

2�+1

)
. (2)

The system(c(m,k)n ) is uniformly bounded and it is biorthogonal to(c(m,−k)n ) whenever
|k|�m+ 1.

3. Littlewood–Paley-type inequality

Thepartial sumsand theFejér meansof the Ciesielski–Fourier series are defined by

s(m,k)n f (x) :=
n∑

j=|k|−m
(f, c

(m,k)
j )c

(m,−k)
j (x) =

∫ 1

0
D(m,k)n (t, x)f (t) dt,

�(m,k)n f (x) := 1

n

n∑
j=1

s
(m,k)
j (x) =

∫ 1

0
K(m,k)n (t, x)f (t) dt,
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respectively, wherem� − 1 and|k|�m+ 1. Here

D(m,k)n (t, x) :=
n∑

j=|k|−m
c
(m,k)
j (t)c

(m,−k)
j (x),

K(m,k)n (t, x) := 1

n

n∑
j=1

D
(m,k)
j (t, x)

are theDirichlet andFejér kernels.
The Walsh–Dirichlet and Walsh–Fejér kernelsD(−1,0)

n andK(−1,0)
n are denoted byDn

andKn, respectively. It is known[23] thatDn(t, x) = Dn(t+̇x),Kn(t, x) = Kn(t+̇x) and

D2n(x) =
{
2n if x ∈ [0, 2−n),
0 if x ∈ [2−n, 1), (3)

|Kn(x)|�2
N−1∑
j=0

2j−N
N−1∑
i=j

D2i (x+̇2−j−1), (4)

wherex ∈ [0, 1), 2N−1�n < 2N and

K2n(x) = C

n∑
j=0

2j−nD2n(x+̇2−j−1). (5)

Ciesielski[5] proved that

‖ sup
n∈N

|s(m,k)n f |‖p�Cp‖f ‖p (1< p < ∞), (6)

where|k|�m+ 1. In this section we will show a vector-valued version of this inequality.
Let us first introduce theHardy–Littlewood maximal function. For f∈ L1 let

Mf (x) := sup
x∈I

1

|I |
∫
I

|f | d� (x ∈ [0, 1)),

where the supremum is taken over all intervals containingx. It is known that
(see[30, p. 51])

∫ 1

0

( ∞∑
i=0

|Mfi |r
)p/r

d��Cp,r
∫ 1

0

( ∞∑
i=0

|fi |r
)p/r

d� (7)

for f = (fi, i ∈ N) ∈ Lp(lr ) (1< p, r < ∞).
The vector-valued Calderon–Zygmund decomposition lemma (see e.g.[33]) can be used

to prove the next weak type inequality (cf.[38, p. 44]). If I is an interval then letrI be the
interval having the same center asI and length|rI | = r|I | (r ∈ N).

Theorem 1. Suppose that the sublinear operator V is bounded fromLp1(lr ) toLp1(lr ) for
some1< p1, r�∞ and∫

[0,1)\2I
‖Vf ‖lr d��C‖f ‖L1(lr )
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for all f ∈ L1(lr ) and intervals I which satisfy

suppf ⊂ I and

∫ 1

0
f d� = 0. (8)

Then the operator V is of weak type(L1(lr ), L1(lr )), i.e.

sup
�>0

��(‖Vf ‖lr > �)�C‖f ‖L1(lr ) (f ∈ L1(lr )).

Let us introduce the following operator:

P (m,k,m
′,k′)

n f :=
n∑

j=(|k|−m)∨(|k′|−m′)
(f, h

(m,k)
j )h

(m′,−k′)
j ,

wherem� − 1,m′ � − 1, |k|�m+ 1, |k′|�m′ + 1. If m = m′ andk = k′ then we write
P
(m,k,m′,k′)
n = P

(m,k)
n . If 1 < p < ∞ then

‖P (m,k,m′,k′)
n f ‖p�Cp‖f ‖p (f ∈ Lp) (9)

uniformly in n ∈ N (see[5]).
The following lemma can be found in Weisz[38].

Lemma 1. Suppose thatm� −1,m′ � −1, |k|�m+1, |k′|�m′ +1andk+N�m+1.
Then

∞∑
j=0

∑
2j<i�2j+1

|(DNh(m,k)i (t))h
(m′,−k′)
i (x)|�C|x − t |−(N+1)

and for allK ∈ N,

∞∑
j=K

∑
2j<i�2j+1

|h(m,k)i (t)h
(m′,−k′)
i (x)|�C2−K |x − t |−2.

The corresponding result to (7) for the operatorsP
(m,k,m′,k′)
n reads as follows.

Theorem 2. Assume thatm� − 1,m′ � − 1, |k|�m+ 1, |k′|�m′ + 1 andf = (fi, i ∈
N) ∈ Lp(lr ) (1< p, r < ∞). If n(i) is an arbitrary natural number for eachi ∈ N then

∫ 1

0

( ∞∑
i=0

|P (m,k,m′,k′)
n(i) fi |r

)p/r
d��Cp,r

∫ 1

0

( ∞∑
i=0

|fi |r
)p/r

d�. (10)

Proof. Observe that (10) forp = r follows from (9). Letg ∈ L1 with supportI satisfying∫ 1
0 g d� = 0 (see (8)). Then

P (m,k,m
′,k′)

n g(x) =
∫
I

g(t)

n∑
j=(|k|−m)∨(|k′|−m′)

h
(m,k)
j (t)h

(m′,−k′)
j (x) dt
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=
∫
I

g(t)

1∑
j=(|k|−m)∨(|k′|−m′)

h
(m,k)
j (t)h

(m′,−k′)
j (x) dt

+
∫
I

g(t)

n∑
j=2

h
(m,k)
j (t)h

(m′,−k′)
j (x) dt

=:A1(x)+ A2(x).

Sinceh(m,k)j ∈ L∞ (j�1),

|A1(x)|�
∫
I

|g(t)| dt.

If k�m then

A2(x) =
∫
I

g(t)

n∑
j=2

(h
(m,k)
j (t)− h

(m,k)
j (t0))h

(m′,−k′)
j (x) dt

wheret0 denotes the center ofI. By Lagrange’s theorem and Lemma1,

|A2(x)| � |I |
∫
I

|g(t)|
n∑
j=2

|Dh(m,k)j (�)||h(m′,−k′)
j (x)| dt

� |I |
∫
I

|g(t)|
∞∑
j=0

∑
2j<i�2j+1

|Dh(m,k)j (�)||h(m′,−k′)
j (x)| dt

� C|I |
∫
I

|g(t)||x − t0|−2 dt

if � ∈ I andx /∈ 2I .
If k = m + 1 andj�2K thenh(m,k)j is constant onI, where we may suppose thatI is

dyadic and|I | = 2−K . ThusP (m,k,m
′,k′)

n g = 0 for n�2K . If n > 2K , then

|A2(x)| �
∫
I

|g(t)|
n∑

j=2K+1

|h(m,k)j (t)||h(m′,−k′)
j (x)| dt

�
∫
I

|g(t)|
∞∑
j=K

∑
2j<i�2j+1

|h(m,k)j (t)||h(m′,−k′)
j (x)| dt

� C|I |
∫
I

|g(t)||x − t0|−2 dt.

Assume thatf ∈ L1(lr ) has supportI and satisfies (8). From the above inequalities it
follows that( ∞∑

i=0

|P (m,k,m′,k′)
n(i) fi(x)|r

)1/r

� C|I ||x − t0|−2

( ∞∑
i=0

(∫ 1

0
|fi | d�

)r)1/r

� C|I ||x − t0|−2
∫ 1

0

( ∞∑
i=0

|fi |r
)1/r

d�
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and

∫
(2I )c

( ∞∑
i=0

|P (m,k,m′,k′)
n(i) fi(x)|r

)1/r

dx�C
∫ 1

0

( ∞∑
i=0

|fi |r
)1/r

d�.

Now Theorem 1 implies

sup
�>0

��



( ∞∑
i=0

|P (m,k,m′,k′)
n(i) fi(x)|r

)1/r

> �


 �C‖f ‖L1(lr ) (f ∈ L1(lr )).

Inequality (10) for 1< p < r follows easily by interpolation (see e.g.[3] or [2]). Forp > r
it can be obtained by the usual duality argument.�

Note that Theorem2 could also be proved by using the corresponding result for the
Haar system and by the equivalence of the spline system and Haar system inLp(lr ). This
equivalence can be found in[12,13]. Actually, they proved the equivalence in more general
UMD spaces. This is a general and complicated result, so for the sake of completeness, we
presented a simpler proof of Theorem2.
The following result was proved by Marcinkievicz and Zygmund for trigonometric

Fourier series (see e.g.[40, II. p. 225]) and by Sunouchi[33] for Walsh–Fourier series.

Theorem 3. Assume thatm� −1, |k|�m+1andf = (fi, i ∈ N) ∈ Lp(lr ) (1< p, r <
∞). If n(i) is an arbitrary natural number for eachi ∈ N then

∫ 1

0

( ∞∑
i=0

|s(m,k)n(i) fi |r
)p/r

d��Cp,r
∫ 1

0

( ∞∑
i=0

|fi |r
)p/r

d�. (11)

Proof. If every n(i) is a 2-power, i.e.n(i) = 2n1(i) then (11) follows from Theorem2,
because it is easy to see thats(m,k)n(i) = P

(m,k)
n(i) .

Set

G(m,k)� (t, s) := 2�/2r�(s)h
(m,k)
2�+� (t) if

� − 1

2� �s < �
2� (12)

(1���2�). Then, by (2), it is easy to see that

c
(m,k)
2�+� (t) =

∫ 1

0
c
(−1,0)
2�+� (s)G

(m,k)
� (t, s) ds (13)

where� ∈ Nand1���2� (seealso[22] and[6]). Let uswriten ∈ N in the formn = 2i+j
with 1�j�2i . For g∈ L1,

s(m,k)n g = s
(m,k)

2i
g +

(
s
(m,k)

2i+j g − s
(m,k)

2i
g
)
.
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Therefore

s
(m,k)

2i+j g(t)− s
(m,k)

2i
g(t)=

j∑
�=1

(g, c
(m,k)

2i+� )c
(m,−k)
2i+� (t)

=
∫ 1

0
G
(m,−k)
i (t, s)

j∑
�=1

(g, c
(m,k)

2i+� )c
(−1,0)
2i+� (s) ds

=
∫ 1

0
G
(m,−k)
i (t, s)

j∑
�=1

2i∑
�=1

A(i)�,� (g, h
(m,k)

2i+� )c
(−1,0)
2i+� (s) ds.

SinceA(i)�,� = (h
(−1,0)
2i+� , c

(−1,0)
2i+� ), we have

s
(m,k)

2i+j g(t)− s
(m,k)

2i
g(t)

=
∫ 1

0
G
(m,−k)
i (t, s)

j∑
�=1


 2i∑

�=1

(g, h
(m,k)

2i+� )h
(−1,0)
2i+� , c

(−1,0)
2i+�


 c(−1,0)

2i+� (s) ds

=
∫ 1

0
G
(m,−k)
i (t, s)

(
s
(−1,0)
2i+j (Pg)(s)− s

(−1,0)
2i

(Pg)(s)
)
ds,

where

Pg := P (m,k,−1,0)g :=
∞∑
n=1

(g, h(m,k)n )h(−1,0)
n .

Of course, we may suppose that the sum is finite. Ciesielski et al.[5] proved that∣∣∣∣
∫ 1

0
G
(m,−k)
i (t, s)h(s) ds

∣∣∣∣ �CMh(t) (t ∈ [0, 1), h ∈ L1),

which implies

|s(m,k)
2i+j g − s

(m,k)

2i
g|�M

(
s
(−1,0)
2i+j (Pg)− s

(−1,0)
2i

(Pg)
)
. (14)

Suppose thatn(i) = 2n1(i) + n(i)(1) with 0�n(i)(1) < 2n1(i). Taking into account (11)
for the Walsh system, Theorem2 and (7) we obtain∫ 1

0

( ∞∑
i=0

|s(m,k)n(i) fi |r
)p/r

d� �
∫ 1

0

( ∞∑
i=0

|s(m,k)
2n1(i)

fi |r
)p/r

d�

+
∫ 1

0

( ∞∑
i=0

|Ms(−1,0)
n(i) (Pfi)|r

)p/r
d�

+
∫ 1

0

( ∞∑
i=0

|Ms(−1,0)
2n1(i)

(Pfi)|r
)p/r

d�

� Cp

∫ 1

0

( ∞∑
i=0

|fi |r
)p/r

d�.
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This completes the proof of the theorem.�

Now we are going to prove the Littlewood–Paley inequality. Let

Q(m,k)f :=

 1∑
j=|k|−m

|(f, c(m,k)j )c
(m,−k)
j |2 +

∞∑
i=0

|s(m,k)
2i+1 f − s

(m,k)

2i
f |2




1/2

be thesquare function. For simplicity, from this time on we suppose that

(f, c
(m,k)
j ) = 0 for j = |k| −m, . . . ,1.

Of course, all theorems of this paper can similarly be proved without this condition. The
following theorem is well known for the Walsh system (see e.g.[21] or in a more general
form [35]). For the trigonometric series it can be found in Zygmund[40, II. p. 224]or [11].

Theorem 4. If m� − 1, |k|�m+ 1 andf ∈ Lp (1< p < ∞) then

Cp‖f ‖p�‖Q(m,k)f ‖p�Cp‖f ‖p. (15)

This theorem can be proved by applying the unconditionality of(h
(m,k)
i , i� |k|−m) and

Khinchine’s inequality tos(m,k)
2i+1 f − s

(m,k)

2i
f = P

(m,k)

2i+1 f − P
(m,k)

2i
f .

4. Marcinkiewicz multiplier theorem

For a givenmultiplier� = (�j , j = 2, . . .)where the�j ’s are real numbers, themultiplier
operatorsare defined by

T
(m,k)

� f :=
∞∑
j=2

�j (f, c
(m,k)
j )c

(m,−k)
j

if the sum does exist and by

T
(m,k)

�,n f :=
n∑
j=2

�j (f, c
(m,k)
j )c

(m,−k)
j (n ∈ N),

wheref ∈ L1.
The Marcinkiewicz multiplier theorem is generalized for Ciesielski systems in the next

theorem.

Theorem 5. Assume thatm� − 1, |k|�m+ 1 andf ∈ Lp (1< p < ∞). If

|�i |�C,
2i+1−1∑
j=2i+1

|�j − �j+1|�C (i ∈ N) (16)
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thenT (m,k)� f ∈ Lp and

‖T (m,k)� f ‖p�Cp‖f ‖p. (17)

Proof. Using Theorems3 and4 the theorem can be proved in the same way as for the
trigonometric system (see[40, II. p. 232]). �

This theorem for Vilenkin–Fourier series is due toYoung[39].
Note that with the same conditionsT (m,k)� is not bounded fromH1 toL1 in general (see

[7,8]). Under slightly stronger conditions the Marcinkiewicz multiplier theorem will be
extended to Hardy spaces in the next section.

5. Multiplier theorems for Hardy spaces

In order to have a common notation for the dyadic and classical Hardy spaces we define
the Poisson kernelsP (m,k)t . If k�m then we introduceP (m,k)t by

P
(m,k)
t (x) := ct

(t2 + |x|2) (x ∈ R, t > 0).

If k = m+ 1 then we defineP (m,k)t as follows. For a fixedt > 0 if n� t < n+ 1 for some
n ∈ N then let

P
(m,k)
t (x) := 1[0,2−n)(x) (x ∈ R).

For a tempered distributionf thenon-tangential maximal functionis defined by

f (m,k)∗ (x) := sup
t>0

|(f ∗ P (m,k)t )(x)| (x ∈ R)

where∗ denotes the convolution.
For 0< p < ∞ theHardy spaceH(m,k)

p (R) consists of all tempered distributionsf for
which

‖f ‖
H
(m,k)
p (R)

:= ‖f (m,k)∗ ‖p < ∞.

Now let

Hp := H(m,k)
p ([0, 1)) := {f ∈ H(m,k)

p (R) : suppf ⊂ [0, 1)}.
Obviously,Hp is the dyadic Hardy space ifk = m+1. It is known (see[30]) that the space
Hp is equivalent toLp if 1 < p < ∞.
A functiona ∈ L∞ is called ap-atomif there exists an intervalI ⊂ [0, 1) such that
(i) suppa ⊂ I ,
(ii) ‖a‖∞ � |I |−1/p,
(iii)

∫
I
a(x)xj dx = 0 wherej ∈ N andj�[1/p− 1].
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Note that[x] denotes the integer part ofx ∈ R.
In the dyadic case, i.e. ifk = m+ 1, we consider only dyadic intervalsI and instead of

(iii) we assume
(iii ′)

∫
I
a(x) dx = 0.

Theorem 6(Weisz[38]). Suppose that the operator V is sublinear and∫
[0,1)\16I

|V a|p d��Cp

for every p-atom a with support I,where0 < p�1. If V is bounded fromLp1 to Lp1 for
some1< p1�∞ then

‖Vf ‖p�Cp‖f ‖Hp (f ∈ Hp).

Now we are ready to prove the main theorem of this section. Note that (16) follows from
(18).

Theorem 7. Assume thatm� − 1, |k|�m+ 1 andf ∈ Hp with 1/2< p < ∞. If

|�n|�C, sup
2n+1� j�2n+1−1

j |�j − �j+1|�C (n ∈ N) (18)

and

2n+1−2∑
j=2n+1

j |�j − 2�j+1 + �j+2|�C (n ∈ N) (19)

then

‖ sup
N∈N

|T (m,k)�,2N f |‖p�Cp‖f ‖Hp . (20)

Proof. Since (16) follows from (18), the theorem for 1< p < ∞ is a consequence of
Theorem5 and (6).

Suppose that12 < p < 1. Choose a p-atoma with supportI and assume that 2−K−1 <

|I |�2−K (K ∈ N) andx /∈ 16I. Then

T
(m,k)

�,2N a(x)=
2N∑
j=2

∫
I

�j a(t)c
(m,k)
j (t) dtc

(m,−k)
j (x)

=
N−1∑
n=0

∫
I

a(t)

2n+1∑
j=2n+1

�j c
(m,k)
j (t)c

(m,−k)
j (x) dt.

By (13),

T
(m,k)

�,2N a(x)=
N−1∑
n=0

∫
I

a(t)

2n+1∑
j=2n+1

�j
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×
∫ 1

0

∫ 1

0
c
(−1,0)
j (s)G(m,k)n (t, s)c

(−1,0)
j (u)G(m,−k)n (x, u) ds du dt

=
N−1∑
n=0

∫
I

a(t)

∫ 1

0

∫ 1

0

2n+1∑
j=2n+1

�j c
(−1,0)
j (s+̇u)

×G(m,k)n (t, s)G(m,−k)n (x, u) ds du dt.

By Abel rearrangement we get that

2n+1∑
j=2n+1

�j c
(−1,0)
j =

2n+1−2∑
j=2n+1

j (�j − 2�j+1 + �j+2)Kj + 2n+1

×(�2n+1−1 − �2n+1)K2n+1 − 2n(�2n+1 − �2n+2)K2n

+ (2�2n+1 − �2n+1−1)D2n+1 − �2n+1D2n

=:
5∑
l=1

L
(l)

�,n.

Thus

sup
N∈N

|T (m,k)�,2N a(x)| �
5∑
l=1

∞∑
n=0

∣∣∣∣
∫
I

a(t)

∫ 1

0

∫ 1

0
L
(l)

�,n(s+̇u)G(m,k)n (t, s)

×G(m,−k)n (x, u) ds du dt

∣∣∣ .
First let us consider the casel = 1 and split the expression into the sums of

A1(x) :=
∞∑
n=K

∣∣∣∣
∫
I

a(t)

∫ 1

0

∫ 1

0
L
(1)
�,n(s+̇u)G(m,k)n (t, s)G(m,−k)n (x, u) ds du dt

∣∣∣∣
and

A2(x) :=
K−1∑
n=0

∣∣∣∣
∫
I

a(t)

∫ 1

0

∫ 1

0
L
(1)
�,n(s+̇u)G(m,k)n (t, s)G(m,−k)n (x, u) ds du dt

∣∣∣∣ .
Using the definition of the atom, (19) and (4) we obtain

A1(x) � Cp2
K/p

∞∑
n=K

∫
I

∫ 1

0

∫ 1

0

∣∣∣∣∣∣
2n+1−2∑
l=2n+1

l(�l − 2�l+1 + �l+2)Kl(s+̇u)

×G(m,k)n (t, s)G(m,−k)n (x, u)

∣∣∣ ds du dt
� Cp2

K/p
∞∑
n=K

∫
I

∫ 1

0

∫ 1

0

n∑
j=0

2j−n
n∑
i=j

D2i (s+̇u+̇2−j−1)

×|G(m,k)n (t, s)G(m,−k)n (x, u)| ds du dt.
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By (12) and (1),

A1(x) � Cp2
K/p

∞∑
n=K

22n
∫
I

2n∑
�=1

2n∑
�=1

∫ �2−n

(�−1)2−n

∫ �2−n

(�−1)2−n

n∑
j=0

2j−n

×
n∑
i=j

D2i (s+̇u+̇2−j−1)q2
n|t−�2−n|q2n|x−�2−n| ds du dt.

Suppose that� < �. It is easy to see that for each� there exists a setSi,� such that

D2i (s+̇u+̇2−j−1) =
{
2i if � ∈ Si,�,
0 if � �∈ Si,�.

Moreover,|Si,�| = 2n−i and

Si,� ⊂ [� + 2n−j−1 − 2n−i + 1,� + 2n−j−1 + 2n−i − 1].
This implies

A1(x) � Cp2
K/p

∞∑
n=K

2−n
∫
I

n∑
i=0

2i
i∑
j=0

2j

×
2n∑

�=1

2n−j−1+2n−i−1∑
�−�=2n−j−1−2n−i+1

q2
n|t−�2−n|q2n|x−�2−n| dt

� Cp2
K/p

∞∑
n=K

2−n
∫
I

n∑
i=0

2i
i∑
j=0

2j

×
2n∑

�=1

2n−i−1∑
l=−2n−i+1

q2
n|t−�2−n|q2n|x−2−j−1−�2−n−l2−n| dt

� Cp2
K/p

∞∑
n=K

2−n
∫
I

n∑
i=0

2i
i∑
j=0

2j
2n−i−1∑

l=−2n−i+1

q2
n|x−t−2−j−1−l2−n| dt,

where we used the inequality

∞∑
k=1

q |i−k|+|j−k| �C(q, r)r |i−j | (q < r < 1). (21)

If

A1,1(x) :=Cp2K/p
∞∑
n=K

2−n
∫
I

K−1∑
i=0

2i
i∑
j=0

2j
2n−i−1∑

l=−2n−i+1

q2
n|x−t−2−j−1−l2−n| dt,

A1,2(x) :=Cp2K/p
∞∑
n=K

2−n
∫
I

n∑
i=K

2i
i∑
j=0

2j
2n−i−1∑

l=−2n−i+1

q2
n|x−t−2−j−1−l2−n| dt
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and

A1,1,1(x) :=Cp2K/p
∞∑
n=K

2−n
∫
I

K−1∑
i=0

2i
i∑
j=0

2j

×
2n−i−1∑

l=−2n−i+1

q2
n|x−t−2−j−1−l2−n|1{2−j−1+8·2K−i I }(x) dt,

A1,1,2(x) :=Cp2K/p
∞∑
n=K

2−n
∫
I

K−1∑
i=0

2i
i∑
j=0

2j

×
2n−i−1∑

l=−2n−i+1

q2
n|x−t−2−j−1−l2−n|1{2−j−1+8·2K−i I }c (x) dt,

then obviously

A1(x)�A1,1(x)+ A1,2(x) and A1,1(x)�A1,1,1(x)+ A1,1,2(x).

It is easy to see that

A1,1,1(x)�Cp2K/p−K
∞∑
n=K

2−n
K−1∑
i=0

2i
i∑
j=0

2j1{2−j−1+8·2K−i I }(x)

and

∫
(16I )c

|A1,1,1(x)|p dx � Cp2
K(1−p)

∞∑
n=K

2−np
K−1∑
i=0

2i(p−1)
i∑
j=0

2jp

� Cp2
K(1−2p)

K−1∑
i=0

2i(2p−1)�Cp,

whenever12 < p�1.
We conclude that

A1,1,2(x) � Cp2
K/p−K

∞∑
n=K

2−n
K−1∑
i=0

2i
i∑
j=0

2j

×
2n−i−1∑

l=−2n−i+1

qC2
n|x−t0−2−j−1|1{2−j−1+8·2K−i I }c (x)

� Cp2
K/p−2K

∞∑
n=K

2n
n∑
i=0

i∑
j=0

2j qC2
n|x−t0−2−j−1|, (22)
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wheret0 denotes thecenter ofI. Supposing thatx−t0 ∈ [2−k, 2−k+1) for some1�k�K−1,
we get

2K/p−2K
∞∑
n=K

2n
n∑
i=0

i∑
j=k

2j qC2
n|x−t0−2−j−1|

� 2K/p−2K
∞∑
n=K

2n
n∑
i=0

i∑
j=k

2j qC2
n|x−t0|

� C2K/p−2K
∞∑
n=K

22nqC2
n|x−t0|

� C2K/p−2K |x − t0|−2,

because of the inequality

∞∑
j=0

2jMq2
j |x−t | �CM |x − t |−M (M > 0, x �= t), (23)

which is easy to show, or it can be found in[4,38]. Furthermore,∫
(16I )c

∣∣∣∣∣∣2K/p−2K
∞∑
n=K

2n
n∑
i=0

i∑
j=k

2j qC2
n|x−t0−2−j−1|

∣∣∣∣∣∣
p

dx

� Cp2
K(1−2p)

∫
(16I )c

|x − t0|−2p dx�Cp. (24)

To investigate the remaining term, observe that

2K/p−2K
∞∑
n=K

2n
n∧(k−1)∑
i=0

(k−1)∧i∑
j=0

2j qC2
n|x−t0−2−j−1|

� 2K/p−2K
∞∑
n=K

2n(1+�)
n∧(k−1)∑
j=0

n∧(k−1)∑
i=j

2(j−n)�2j (1−�)qC2
n|x−t0−2−j−1|

�C2K/p−2K
∞∑
n=K

2n(1+�)
k−1∑
j=0

2j (1−�)qC2
n|x−t0−2−j−1|

�C2K/p−2K
k−1∑
j=0

2j (1−�)|x − t0 − 2−j−1|−(1+�),

where 0< � < 1 is arbitrary andx − t0 ∈ [2−k, 2−k+1). Moreover, ifk�n then

2K/p−2K
∞∑
n=K

2n
n∑
i=k

(k−1)∧i∑
j=0

2j qC2
n|x−t0−2−j−1|

�2K/p−2K
∞∑
n=K

2n(1+�)
k−1∑
j=0

n∑
i=k

2(j−n)�2j (1−�)qC2
n|x−t0−2−j−1|
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� C2K/p−2K
k−1∑
j=0

2j (1−�)|x − t0 − 2−j−1|−(1+�).

Hence, if we choose� such that(1+ �)p < 1, then

∫
(16I )c

∣∣∣∣∣∣2K/p−2K
∞∑
n=K

2n
n∑
i=0

(k−1)∧i∑
j=0

2j qC2
n|x−t0−2−j−1|

∣∣∣∣∣∣
p

dx

� Cp2
K(1−2p)

K−1∑
k=1

k−1∑
j=0

2j (1−�)p
∫

{x−t0∈[2−k,2−k+1)}
|x − t0 − 2−j−1|−(1+�)p dx

� Cp2
K(1−2p)

K−1∑
k=1

k−1∑
j=0

2j (1−�)p2−j (1−(1+�)p)�Cp. (25)

Let us estimateA1,2(x) by the sum of

A1,2,1(x) :=Cp2K/p
∞∑
n=K

2−n
∫
I

n∑
i=K

2i
i∑
j=0

2j

×
2n−i−1∑

l=−2n−i+1

q2
n|x−t−2−j−1−l2−n|1{2−j−1+8I}(x) dt

and

A1,2,2(x) :=Cp2K/p
∞∑
n=K

2−n
∫
I

n∑
i=K

2i
i∑
j=0

2j

×
2n−i−1∑

l=−2n−i+1

q2
n|x−t−2−j−1−l2−n|1{2−j−1+8I}c (x) dt.

Integrating int we can conclude that

A1,2,1(x) � Cp2
K/p

∞∑
n=K

2−n
n∑

i=K
2i

i∑
j=0

2j2n−i2−n1{2−j−1+8I}(x)

� Cp2
K/p

∞∑
n=K

2−n
n∑

i=K

i∑
j=0

2j1{2−j−1+8I}(x).

It is easy to see that 1{2−j−1+8I}(x) = 0 if x /∈ 16I andj�K. Henceforth∫
(16I )c

|A1,2,1(x)|p dx � Cp2
K

∞∑
n=K

2−np
n∑

i=K

K∑
j=0

2jp2−K

� Cp

∞∑
n=K

2−(n−K)p(n−K)�Cp.
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On the other hand,

A1,2,2(x) � Cp2
K/p−K

∞∑
n=K

2−n
n∑

i=K
2i

i∑
j=0

2j

×
2n−i−1∑

l=−2n−i+1

qC2
n|x−t0−2−j−1|1{2−j−1+8I}c (x)

� Cp2
K/p−2K

∞∑
n=K

2n
n∑
i=0

i∑
j=0

2j qC2
n|x−t0−2−j−1|

and this can be handled in the same way asA1,1,2(x) in (22). This means that we have
estimatedA1(x).
Let us considerA2(x). If k = m+ 1, then for a fixeds ∈ [0, 1),G(m,k)n (t, s) is constant

on I, whenevern�K. HenceA2(x) = 0.
Suppose now thatk�m and setA(t) := ∫ t

0 a d�. Integrating by parts we can see that

A2(x) =
K−1∑
n=0

∣∣∣∣
∫
I

A(t)

∫ 1

0

∫ 1

0
L
(1)
�,n(s+̇u)DtG(m,k)n (t, s)G(m,−k)n (x, u) ds du dt

∣∣∣∣ .
EstimatingA2 in the same way asA1 we obtain

A2(x) � Cp2
K/p−K

K−1∑
n=0

∫
I

n∑
i=0

2i
i∑
j=0

2j
2n−i−1∑

l=−2n−i+1

q2
n|x−t−2−j−1−l2−n| dt

=:A2,1(x)+ A2,2,

where

A2,1(x) :=Cp2K/p−K
K−1∑
n=0

∫
I

n∑
i=0

2i
i∑
j=0

2j

×
2n−i−1∑

l=−2n−i+1

q2
n|x−t−2−j−1−l2−n|1{2−j−1+8·2K−i I }(x) dt,

A2,2(x) :=Cp2K/p−K
K−1∑
n=0

∫
I

n∑
i=0

2i
i∑
j=0

2j

×
2n−i−1∑

l=−2n−i+1

q2
n|x−t−2−j−1−l2−n|1{2−j−1+8·2K−i I }c (x) dt.

Then

A2,1(x)�Cp2K/p−2K
K−1∑
n=0

n∑
i=0

2i
i∑
j=0

2j1{2−j−1+8·2K−i I }(x)
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and ∫
(16I )c

|A2,1(x)|p dx�Cp2K(1−2p)
K−1∑
n=0

n∑
i=0

2i(p−1)
i∑
j=0

2jp�Cp.

ForA2,2 we have

A2,2(x)�Cp2K/p−2K
K−1∑
n=0

2n
n∑
i=0

i∑
j=0

2j qC2
n|x−t0−2−j−1|

and this was estimated after (22).
Since|L(l)�,n|� |L(1)�,n| for l = 2, 3,4, 5, the corresponding cases with respect tol can

be handled in the same way as above. By interpolation and Theorems5 and6 we get the
theorem for all 1/2< p�1. �

If the multiplier� is piecewise linear then we can prove a stronger result. Let

pm,k :=
{ 1/(m− k + 2) if k�m,
0 if k = m+ 1.

Theorem 8. Assume thatm� − 1, |k|�m+ 1 andf ∈ Hp with pm,k < p < ∞. If (18)
is satisfied and

�j − 2�j+1 + �j+2 = 0 f or all j = 2n + 1, . . . ,2n+1 − 2 (n ∈ N)

then

‖ sup
N∈N

|T (m,k)�,2N f |‖p�Cp‖f ‖Hp .

Proof. The proof is similar to that of Theorem7, so we point out only the main steps. Since
L
(1)
�,n = 0 andD2n �K2n , it is enough to consider the case according tol = 3. We define
A1 andA2 similarly as in the previous proof. Then

A1(x) � Cp2
K/p

∞∑
n=K

∫
I

∫ 1

0

∫ 1

0

∣∣2n(�2n+1 − �2n+2)K2n(s+̇u)

×G(m,k)n (t, s)G(m,−k)n (x, u)

∣∣∣ ds du dt
� Cp2

K/p
∞∑
n=K

∫
I

∫ 1

0

∫ 1

0

n∑
j=0

2j−nD2n(s+̇u+̇2−j−1)

×|G(m,k)n (t, s)G(m,−k)n (x, u)| ds du dt.
This means that in the previous proof we should writei = n instead of the sum overi and,
moreover,l = 0 instead of the sum overl. Sincei = n, A1,1 = 0 and

A1,2(x) := Cp2
K/p

∞∑
n=K

∫
I

n∑
j=0

2j q2
n|x−t−2−j−1| dt�A1,2,1(x)+ A1,2,2(x)



214 F. Weisz / Journal of Approximation Theory 133 (2005) 195–220

with

A1,2,1(x) :=Cp2K/p
∞∑
n=K

∫
I

n∑
j=0

2j q2
n|x−t−2−j−1|1{2−j−1+8I}(x) dt,

A1,2,2(x) :=Cp2K/p
∞∑
n=K

∫
I

n∑
j=0

2j q2
n|x−t−2−j−1|1{2−j−1+8I}c (x) dt.

Similarly as in the previous proof,

∫
(16I )c

|A1,2,1(x)|p dx�Cp2K
∞∑
n=K

2−np
K∑
j=0

2jp2−K�Cp

for all 0< p < 1. Furthermore, forr�1,

A1,2,2(x) � Cp2
K/p−K

∞∑
n=K

n∑
j=0

2j qC2
n|x−t0−2−j−1|1{2−j−1+8I}c (x)

� Cp2
K/p−(r+1)K

∞∑
n=K

2rn
n∑
j=0

2j qC2
n|x−t0−2−j−1|.

Similarly to (24) and (25) we get that∫
(16I )c

|A1,2,2(x)|p dx�Cp

for all 1/(r+1) < p < 1/r. By interpolationwe get the inequality for all 1/(r+1) < p�1
and, sincer�1 is arbitrary, for 0< p�1.
If k = m+ 1, thenA2(x) = 0 and the theorem is proved. Suppose thatk�m. If

A(0) := a, A(j)(t) :=
∫ t

0
A(j−1) d� (j ∈ N)

then

‖A(j)‖∞ �2K/p−jK (j ∈ N).

Integrating by parts(m− k + 1)-times we obtain

A2(x) =
K−1∑
n=0

∣∣∣∣
∫
I

A(m−k+1)(t)

∫ 1

0

∫ 1

0
2n(�2n+1 − �2n+2)K2n(s+̇u)

×Dm−k+1
t G(m,k)n (t, s)G(m,−k)n (x, u) ds du dt

∣∣∣
� 2K/p−(m−k+1)K

K−1∑
n=0

2(m−k+1)n
∫
I

n∑
j=0

2j q2
n|x−t−2−j−1| dt

=:A2,1(x)+ A2,2,
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where

A2,1(x) := 2K/p−(m−k+1)K
K−1∑
n=0

2(m−k+1)n
∫
I

n∑
j=0

2j q2
n|x−t−2−j−1|

×1{2−j−1+8·2K−nI }(x) dt,

A2,2(x) := 2K/p−(m−k+1)K
K−1∑
n=0

2(m−k+1)n
∫
I

n∑
j=0

2j q2
n|x−t−2−j−1|

×1{2−j−1+8·2K−nI }c (x) dt.

Then the inequality∫
(16I )c

|A2(x)|p dx�Cp (1/(m− k + 2) < p < 1)

can be shown by the above methods. This completes the proof of the theorem.�

Note that under the conditions of Theorems7 or 8 the operatorT (m,k)�,2N is not bounded
fromL1 toL1 in general (see[26]).
Now we are going to extend Theorem4 to Hardy spaces.

Theorem 9. If m� − 1, |k|�m+ 1 and� satisfies the condition in Theorem7, then

‖Q(m,k)(T (m,k)� f )‖p�Cp‖f ‖Hp (f ∈ Hp)
for all 1

2 < p < ∞. If � fulfills also the condition of Theorem8, then the inequality holds
for all pm,k < p < ∞.

Proof. The operatorsQ(m,k) andT (m,k)� are bounded onLp (1< p < ∞) (see Theorems
4 and5). Observe that

Q(m,k)(T
(m,k)

� a)(x) =

 ∞∑
n=0

∣∣∣∣∣∣
∫
I

a(t)

2n+1∑
j=2n+1

�j c
(m,k)
j (t)c

(m,−k)
j (x) dt

∣∣∣∣∣∣
2



1/2

�
∞∑
n=0

∣∣∣∣∣∣
∫
I

a(t)

2n+1∑
j=2n+1

�j c
(m,k)
j (t)c

(m,−k)
j (x) dt

∣∣∣∣∣∣ ,
wherea is a p-atomwith supportI. The theorem can be shown in the sameway as Theorems
7 and8. �

Since the sequence(�j = 1, j ∈ N) trivially fulfills the conditions of Theorem8, we get

Corollary 1. If m� − 1, |k|�m+ 1 andpm,k < p < ∞ then

‖Q(m,k)f ‖p�Cp‖f ‖Hp (f ∈ Hp).
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Let us see some other examples for�, which satisfy the conditions in Theorems7 and8.
Set

�(1)j := j − 1

2n
for (2n + 1�j�2n+1) (n ∈ N) (26)

and

�(2)j := 2n

j − 1
for (2n + 1�j�2n+1) (n ∈ N). (27)

It is easy to see that�(1) satisfies the conditions of Theorems7 and8 and, moreover,�(2)

fulfills the conditions in Theorem7. More generally, let� ∈ L∞([0,∞)) be a real function
such that for alln ∈ N


� is twice continuously differentiable on(2n, 2n+1] except of at mostM points
�′′ �= 0 on(2n, 2n+1] except of at mostM points or intervals,
the functionx �→ |x�′(x)| is bounded where it is defined,

(M ∈ N). Then(�n := �(n)) satisfies the conditions of Theorem7. Indeed, if�′′ �0 on
the interval(i, j + 2) ⊂ (2n, 2n+1], then� is convex on this interval and this yields that
�k − 2�k+1 + �k+2�0 for i�k�j . Hence

j∑
k=i

k|�k − 2�k+1 + �k+2| = �i + (i − 1)(�i − �i+1)− j (�j+1 − �j+2)− �j+1.

By Lagrange’s mean value theorem,

(i − 1)|�i − �i+1| = (i − 1)|�′(�(i))| = i − 1

�(i)
|�(i)�′(�(i))|�C,

wherei < �(i) < i + 1.
If �′′ = 0 at an isolated pointu or if �′′ is not twice continuously differentiable atu,

u ∈ (k, k + 1] ⊂ (2n, 2n+1], then
k(�k − 2�k+1 + �k+2) = k(�k − �k+1)− k(�k+1 − �k+2).

Applying Lagrangemean value theorem on the intervals(k, u), (u, k+1)and(k+1, k+2),
we can see thatk |�k − 2�k+1 + �k+2| is bounded.
Since on the interval(2n, 2n+1] there are at mostM intervals or isolated points satisfying

the above properties, we have shown our assumption.

6. The Sunouchi operator

The following two operators were introduced by Sunouchi[31–33] for Walsh- and
trigonometric Fourier series (see also[40, II. p. 224]):

U(m,k)f :=
( ∞∑
n=0

|s(m,k)
2n+1 f − �(m,k)

2n+1 f |2
)1/2

(f ∈ L1),
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V (m,k)f :=
( ∞∑
n=1

|s(m,k)n f − �(m,k)n f |2
n

)1/2

(f ∈ L1).

ForWalsh–Fourier series Sunouchi[33,32]verified that the operatorsU andVare bounded
onLp (1< p < ∞). The analogous statement fails to hold forp = 1 (see[34]). However,
it was proved by Simon[24] thatU is bounded fromHp to Lp for p = 1 and by Weisz
[37] for all 0 < p�1 (see also[10,25]). In this section these results will be extended to
Ciesielski–Fourier series.

Theorem 10. If m� − 1 and|k|�m+ 1 then

Cp‖V (m,k)f ‖p�‖U(m,k)f ‖p�Cp‖V (m,k)f ‖p (28)

for 1< p < ∞ and

1
3Q

(m,k)(T
(m,k)

�(1)
f )�U(m,k)f �Q(m,k)(T (m,k)

�(1)
f ), (29)

where the multiplier�(1) was defined in(26).

Proof. With the help of Theorem3 inequality (28) can be shown in the same way as for
Walsh–Fourier series (see[31,33]or [36]).

Observe that

s(m,k)n f (x)− �(m,k)n f (x) =
n∑
j=2

j − 1

n
(f, c

(m,k)
j )c

(m,−k)
j (x).

Let

d
(m,k)

�,n f (x) :=
2n+1∑

j=2n+1

�j (f, c
(m,k)
j )c

(m,−k)
j (x) (n ∈ N),

d
(m,k)

� f := (d
(m,k)

�,n f, n ∈ N), bn := 2−n−1, b := (bn, n ∈ N).

We will see that the operatorU(m,k) can be rewritten as thel2-norm of the convolution of
the two sequencesd(m,k)

�(1)
f andb. Indeed,

(d
(m,k)

�(1)
f ∗ b)n =

n∑
i=0

d
(m,k)

�(1),i
f bn−i

=
n∑
i=0

2i+1∑
j=2i+1

j − 1

2i
(f, c

(m,k)
j )c

(m,−k)
j 2i−n−1

= 2−n−1
2n+1∑
j=2

(j − 1)(f, c(m,k)j )c
(m,−k)
j

= s(m,k)
2n+1 f − �(m,k)

2n+1 f
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and so

U(m,k)f = ‖(d(m,k)
�(1)

f ∗ b)‖l2 �‖(d(m,k)
�(1),n

f )‖l2 = Q(m,k)(T
(m,k)

�(1)
f ).

On the other hand, ifd := (2,−1,0, 0, . . .), then

((s
(m,k)

2n+1 f − �(m,k)
2n+1 f ) ∗ d)n = 2 · 2−n−1

2n+1∑
j=2

(j − 1)(f, c(m,k)j )c
(m,−k)
j

− 2−n
2n∑
j=2

(j − 1)(f, c(m,k)j )c
(m,−k)
j = d

(m,k)

�(1),n
f

and

Q(m,k)(T
(m,k)

�(1)
f )�3U(m,k)f

which proves the theorem.�

Corollary 2. If m� − 1, |k|�m+ 1 and1< p < ∞ then

Cp‖f ‖p�‖U(m,k)f ‖p�Cp‖f ‖p (f ∈ Lp)
and ifpm,k < p�1 then

‖U(m,k)f ‖p�Cp‖f ‖Hp (f ∈ Hp). (30)

Proof. The right-hand side of the inequalities follow from Theorem4,5 and9. For the left
hand side observe that�(2) = (�(1))−1 and hence

‖f ‖p = ‖T (m,k)
�(2)

(T
(m,k)

�(1)
f )‖p�Cp‖T (m,k)�(1)

f ‖p
� Cp‖Q(m,k)(T (m,k)�(1)

f )‖p�Cp‖U(m,k)f ‖p.
The proof of the corollary is complete.�

Note that the converse inequality to (30) for Walsh- and Walsh–Kaczmarz series was
verified by Daly and Phillips[10] and Simon[25,27,28].

Acknowledgments

I would like to thank the referees for reading the paper carefully and for their useful
comments.

References

[1] A. Baernstein II, E.T. Sawyer, Embedding and Multiplier Theorems forHp(Rn), Memoirs of American
Mathematical Society, vol. 318, American Mathematical Society, Providence, RI, 1985.



F. Weisz / Journal of Approximation Theory 133 (2005) 195–220 219

[2] C. Bennett, R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, vol. 129, Academic
Press, NewYork, 1988.

[3] J. Bergh, J. Löfström, Interpolation Spaces, an Introduction, Springer, Berlin, 1976.
[4] Z. Ciesielski, Constructive function theory and spline systems, Studia Math. 53 (1975) 277–302.
[5] Z. Ciesielski, Equivalence, unconditionality and convergence a.e. of the spline bases inLp spaces, in:

ApproximationTheory, BanachCenter Publications, vol. 4, PWN-PolishScientific Publishers,Warsaw, 1979,
pp. 55–68.

[6] Z. Ciesielski, P. Simon, P. Sjölin, Equivalence of Haar and Franklin bases inLp spaces, Studia Math. 60
(1977) 195–210.

[7] J.E. Daly, S. Fridli, Walsh multipliers for dyadic Hardy spaces, Appl. Anal. 82 (2003) 689–700.
[8] J.E. Daly, S. Fridli, Trigonometric multipliers onH2	, Bull. Canad. Math. Soc., to appear.
[10] J. Daly, K. Phillips, Walsh multipliers and square functions for the Hardy spaceH1, Acta Math. Hungar. 19

(1998) 311–321.
[11] R.E. Edwards, G.I. Gaudry, Littlewood–Paley and Multiplier Theory, Ergebnisse der Mathematik und ihrer

Grenzgebiete, vol. 90, Springer, Berlin, 1977.
[12] T. Figiel, On equivalence of some bases to the Haar system in spaces of vector-valued functions, Bull. Polish

Acad. Sci. Math. 36 (1988) 119–131.
[13] T. Figiel, P. Wojtaszczyk, Special bases in function spaces, in: W.B. Johnson, J. Lindenstrauss (Eds.),

Handbook of the Geometry of Banach Spaces, North-Holland, Amsterdam, 2001, , pp. 561–597.
[14] G. Gát, Investigations of certain operators with respect to theVilenkin system,Acta Math. Hungar. 61 (1993)

131–149.
[15] G. Gát, On the lower bound of Sunouchi’s operator with respect to Vilenkin systems, Anal. Math. 23 (1997)

259–272.
[16] L. Hörmander, Estimates for translation invariant operators inLp spaces, Acta Math. 104 (1960) 93–139.
[17] T. Kitada, WeightedHp multipliers on locally compact Vilenkin groups, Monatsh. Math. 110 (1990)

283–295.
[18] T. Kitada, C.W. Onneweer, Hörmander-type multiplier theorems on locally compact Vilenkin groups, in:

P.L. Butzer, R.S. Stankovic (Eds.), Theory and Applications of Gibbs Derivatives, Mathematical Institute,
Beograd, 1989, , pp. 115–125.

[19] C.W.Onneweer, T.S. Quek,Hp multiplier results on locally compactVilenkin groups, Quart. J. Math. Oxford
40 (1989) 313–323.

[20] C.W. Onneweer, T.S. Quek, OnHp(Rn)-multipliers of mixed-norm type, Proc.Amer. Math. Soc. 121 (1994)
543–552.

[21] R.E.A.C. Paley, A remarkable system of orthogonal functions, Proc. London Math. Soc. 34 (1932) 241–279.
[22] F. Schipp, On a.e. convergence of expansion with respect to a bounded orthonormal system of polygonals,

Studia Math. 58 (1976) 287–290.
[23] F. Schipp, W.R. Wade, P. Simon, J. Pál, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam

Hilger, Bristol, NewYork, 1990.
[24] P. Simon,(L1, H)-type estimations for some operators with respect to the Walsh–Paley system, Acta Math.

Hungar. 46 (1985) 307–310.
[25] P. Simon, Hardy spaces and multipliers, Acta Sci. Math. (Szeged) 64 (1998) 183–200.
[26] P. Simon, Remarks onWalsh–Fourier multipliers, Publ. Math. Debrecen 52 (1998) 635–657.
[27] P. Simon, Two-parameter multipliers on Hardy spaces, Colloq. Math. 77 (1998) 9–31.
[28] P. Simon,A note on the Sunouchi operator with respect to theWalsh–Kaczmarz system,Appl.Anal. 77 (2001)

383–395.
[29] P. Simon, Two-parameter Vilenkin multipliers and a square function, Anal. Math. 28 (2002) 231–249.
[30] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton

University Press, Princeton, NJ, 1993.
[31] G.-I. Sunouchi, On the strong summability of Fourier series, Proc. Amer. Math. Soc. 1 (1950) 526–533.
[32] G.-I. Sunouchi, On the Walsh–Kaczmarz series, Proc. Amer. Math. Soc. 2 (1951) 5–11.
[33] G.-I. Sunouchi, Strong summability of Walsh–Fourier series, Tohoku Math. J. 16 (1969) 228–237.
[34] W.R.Wade, Decay ofWalsh series and dyadic differentiation, Trans. Amer. Math. Soc. 277 (1983) 413–420.
[35] F.Weisz, Martingale Hardy Spaces and theirApplications in FourierAnalysis, Lecture Notes inMathematics,

vol. 1568, Springer, Berlin, 1994.



220 F. Weisz / Journal of Approximation Theory 133 (2005) 195–220

[36] F.Weisz, Strong summability of two-dimensionalWalsh–Fourier series, Acta. Sci. Math. (Szeged) 60 (1995)
779–803.

[37] F. Weisz, The boundedness of the two-parameter Sunouchi operators on Hardy spaces, Acta Math. Hungar.
72 (1996) 121–152.

[38] F. Weisz, Summability of Multi-dimensional Fourier Series and Hardy Spaces, Mathematics and its
Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.

[39] W.-S. Young, Littlewood–Paley and multiplier theorems for Vilenkin–Fourier series, Canad. J. Math. 46
(1994) 662–672.

[40] A. Zygmund, Trigonometric Series, third ed., Cambridge Press, London, 2002.


	Marcinkiewicz multiplier theorem and the Sunouchi operator for Ciesielski--Fourier series
	Introduction
	Ciesielski systems
	Littlewood--Paley-type inequality
	Marcinkiewicz multiplier theorem
	Multiplier theorems for Hardy spaces
	The Sunouchi operator
	References


